
 Baciu H. Alexandru,

Corduneanu Vlad,

Haralamb Marian

Mail:

alexandru.baciu2@student.tuiasi.ro,

marian.haralamb @student.tuiasi.ro, vlad-

florin.corduneanu@student.tuiasi.ro

Proiect:

Smart Safe - Remote Version

Hackster: https://www.hackster.io/the-team/smart-safe-box-sars-cov-2-version-fb3ba5

Video: https://www.youtube.com/watch?v=7BznDw_dvoU&feature=youtu.be

https://www.youtube.com/watch?v=7BznDw_dvoU&feature=youtu.be
https://www.hackster.io/the-team/smart-safe-box-sars-cov-2-version-fb3ba5
mailto:alexandru.baciu2@student.tuiasi.ro
mailto:alexandru.baciu2@student.tuiasi.ro

Echipa nr. 2: Smart Safe - Remote
Version

Elevator Pitch

This project respects the norms of social distancing. Thus, the owner can

communicate with the safe from any distance. It is great for this period!

Cover Image

Story

We all know that there are very few people who declare all their income to the state.

We always run into the expression "keep your money under the mattress".

Technology is evolving, and the money is coming.

This safe comes as a solution to this problem. The safe has 3 states, given by the 3

LEDs. The closed state in which the yellow LED is continuously lit, the wrong

password state given by the red LED and the open state given by the green LED.

When the safe is open, the password can be changed by introducing a new password.

The controller of the safe has five buttons and a display. Four buttons are used to

control the digits value(each button for a digit, when pressed the value is increased by

one and from 9 goes to 0) and one is used to validate the password, which is used to

send the password to the safe module via kafka on a public IP.

Another important part of this project is the kafka server. It must be installed on a

cloud server because a public IP is required. This solution was chosen for its lowest

difficulty of being used remotely. The VPS comes with debian 10 installed. The next

step is to connect to it with putty (SSH2 connection). After that you can follow this

tutorial to install and run kafka on your machine:

https://www.digitalocean.com/community/tutorials/how-to-install-apache-kafka-on-

debian-10

So, how does Kafka work? Kafka stores key-value messages that come from

arbitrarily many processes called producers. The data can be partitioned into different

"partitions" within different "topics". Within a partition, messages are strictly ordered

by their offsets (the position of a message within a partition), and indexed and stored

https://www.digitalocean.com/community/tutorials/how-to-install-apache-kafka-on-debian-10
https://www.digitalocean.com/community/tutorials/how-to-install-apache-kafka-on-debian-10
https://www.digitalocean.com/community/tutorials/how-to-install-apache-kafka-on-debian-10

to gether with a

timestamp. Other processes called "consumers" can read messages from partitions

Schematics

Code

Safe.py
#import the libraries

import pigpio

import time

import RPi.GPIO as GPIO

import threading

import ctypes

from kafka import KafkaConsumer

#define kafka password topic

topic = "password_topic"

#creating consumer for getting messages from password topic

result_consumer = KafkaConsumer(topic, bootstrap_servers='PUT_HERE_PUBLIC_SERVER_IP')

GPIO.setmode(GPIO.BOARD)

pi = pigpio.pi()

#store the pin used by the servo

servo = 18

#set the pin as OUTPUT

pi.set_mode(servo, pigpio.OUTPUT)

#position for closed safe

closed = 500

#position for open safe

opened = 1500

#password for safe

password = "0000"

#define the pin used for button close safe

buttonClose = 7

#define the pin used for red led

redLed = 37

#define the pin used for green led

greenLed = 35

#define the pin used for yellow led

yellowLed = 33

#set the pin for the led as OUTPUT

GPIO.setup(redLed, GPIO.OUT)

GPIO.setup(greenLed, GPIO.OUT)

GPIO.setup(yellowLed, GPIO.OUT)

#define flag for password set

flag_password = 0

#define password from user

user_password = None

#global variable for reading password thread

shouldClose = False

#set the pins for the buttons as INPUT, and we will

#set the initial value to On, or we can say that will be pulled up

GPIO.setup(buttonClose, GPIO.IN, pull_up_down = GPIO.PUD_UP)

#function for opening the safe

def open_safe():

 #put the servo in the position open position

 pi.set_servo_pulsewidth(servo, opened)

 time.sleep(1)

#function for closing the safe

def close_safe():

 #put the servo in the closed position

 pi.set_servo_pulsewidth(servo, closed)

 #sleep 1 second

 time.sleep(1)

#function for #setiing the password

def get_password():

 global user_password

 global should_close

 global flag_password

 while shouldClose == False:

 message = next(result_consumer)

 user_password = message.value.decode("utf-8")

 print(user_password)

 flag_password = 1

#function that raise exception to close the thread

def raise_exception(thread):

 thread_id = thread.ident

 res =

ctypes.pythonapi.PyThreadState_SetAsyncExc(thread_id,ctypes.py_object(SystemExit))

 if res > 1:

 ctypes.pythonapi.PyThreadState_SetAsyncExc(thread_id, 0)

 print('Exception raise failure')

#creating and starting a new thread for password listening

thread = threading.Thread(target = get_password)

thread.start()

#turn on the yellow Led

GPIO.output(yellowLed, GPIO.HIGH)

#turn off the green Led

GPIO.output(greenLed, GPIO.LOW)

#turn off the red Led

GPIO.output(redLed, GPIO.LOW)

try:

 while True:

 #getting user password

 if flag_password == 1:

 flag_password = 0

 #check password availability

 if user_password == password:

 #turn on the green Led

 GPIO.output(greenLed, GPIO.HIGH)

 #turn off the red Led

 GPIO.output(redLed, GPIO.LOW)

 #turn off the yellow Led

 GPIO.output(yellowLed, GPIO.LOW)

 #check if safe it is already opened

 if pi.get_servo_pulsewidth(servo) != opened:

 open_safe()

 else:

 if pi.get_servo_pulsewidth(servo) == opened:

 password = user_password

 else:

 #turn on the red Led

 GPIO.output(redLed, GPIO.HIGH)

 #turn off the green Led

 GPIO.output(greenLed, GPIO.LOW)

 #turn off the yellow Led

 GPIO.output(yellowLed, GPIO.LOW)

 #check close button pressed

 if GPIO.input(buttonClose) == GPIO.LOW:

 #turn on the yellow Led

 GPIO.output(yellowLed, GPIO.HIGH)

 #turn off the green Led

 GPIO.output(redLed, GPIO.LOW)

 #turn off the red Led

 GPIO.output(greenLed, GPIO.LOW)

 #check if safe it is already closed

 if pi.get_servo_pulsewidth(servo) != closed:

except KeyboardInterrupt:

 #stop reading thread

 shouldClose = True

 raise_exception(thread)

 #wait for thread to finish work

 thread.join()

 #stop the servo pulses

 pi.set_servo_pulsewidth(servo, 0)

 #stop the connection with the daemon

 pi.stop()

 #clean all the used ports

 GPIO.cleanup()

 #close consumer

 result_consumer.close()

Owner.py

#import the libraries used

import time

import RPi.GPIO as GPIO

import threading

import sys

from kafka import KafkaProducer

#kafka variables

topic = "password_topic"

password_producer = KafkaProducer(bootstrap_servers=['PUT_HERE_PUBLIC_SERVER_IP'])

#we will set the pin numbering to the GPIO.BOARD numbering

GPIO.setmode(GPIO.BOARD)

#define the pins used

#Buttons

button1 = 35

button2 = 33

button3 = 31

button4 = 29

buttonVALIDATE = 37

#LCD

dataPin = 12

latchPin = 10

clockPin = 8

cifra1 = 0

cifra2 = 0

cifra3 = 0

cifra4 = 0

p1 = False

p2 = False

p3 = False

p4 = False

pValidate = False

#set the pins for the buttons as INPUT, and we will

#set the initial value to On, or we can say that will be pulled up

#Buttons

GPIO.setup(button1, GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(button2, GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(button3, GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(button4, GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.setup(buttonVALIDATE, GPIO.IN, pull_up_down = GPIO.PUD_UP)

#LCD

GPIO.setup(dataPin, GPIO.OUT)

GPIO.setup(latchPin, GPIO.OUT)

GPIO.setup(clockPin, GPIO.OUT)

#set the initial state for the pins as LOW

GPIO.output(dataPin, GPIO.LOW)

GPIO.output(latchPin, GPIO.LOW)

GPIO.output(clockPin, GPIO.LOW)

#create byte variables that have only one segment set to HIGH

a = 0b00000001

b = 0b00000010

c = 0b00000100

d = 0b00001000

e = 0b00010000

f = 0b00100000

g = 0b01000000

dot = 0b10000000

#declare variables that will be send to the first shift

#register and turn on the LED segments and show a digit

#from 0 to 9, with or without the dot

zero = 191 #0b10111111

zero_no_dot = 63 #0b00111111

one = 134 #0b10000110

one_no_dot = 6 #0b00000110

two = 219 #0b11011011

two_no_dot = 91 #0b01011011

three = 207 #0b11001111

three_no_dot = 79 #0b01001111

four = 230 #0b11100110

four_no_dot = 102 #0b01100110

five = 237 #0b11101101

five_no_dot = 109 #0b01101101

six = 253 #0b11111101

six_no_dot = 125 #0b01111101

seven = 135 #0b10000111

seven_no_dot = 7 #0b00000111

eight = 255 #0b11111111

eight_no_dot = 127 #0b01111111

nine = 239 #0b11101111

nine_no_dot = 111 #0b01101111

numbers=[zero_no_dot,one_no_dot,two_no_dot,three_no_dot,

 four_no_dot,five_no_dot,six_no_dot,

 seven_no_dot,eight_no_dot,nine_no_dot,

 dot]

#declare a variable that will store the current digits active

digit = 0

def Digit(x):

 global digit

 if x == 1:

 digit = 14 #0b00001110

 elif x == 2:

 digit = 13 #0b00001101

 elif x == 3:

 digit = 11 #0b00001011

 elif x == 4:

 digit = 7 #0b00000111

 elif x == 5:

 digit = 0 #0b00000000

#function to send the values to the shift registers

def shift(buffer):

 #make the global variable available

 global digit

#send the bits to the second shift register

 for i in range(0,8):

 GPIO.output(dataPin, (128 & (digit << i)))

 GPIO.output(clockPin, GPIO.HIGH)

 time.sleep(0.00005)

 GPIO.output(clockPin, GPIO.LOW)

#send the bits to the first shift register

 for i in range(0,8):

 GPIO.output(dataPin, (128 & (buffer << i)))

 GPIO.output(clockPin, GPIO.HIGH)

 time.sleep(0.00005)

 GPIO.output(clockPin, GPIO.LOW)

#shift the bits

 GPIO.output(latchPin, GPIO.HIGH)

 time.sleep(0.00005)

 GPIO.output(latchPin, GPIO.LOW)

def refresh():

 global cifra1

 global cifra2

 global cifra3

 global cifra4

 global numbers

 Digit(1)

 shift(numbers[cifra1])

 Digit(2)

 shift(numbers[cifra2])

 Digit(3)

 shift(numbers[cifra3])

 Digit(4)

 shift(numbers[cifra4])

def checkButtons():

 global cifra1

 global cifra2

 global cifra3

 global cifra4

 global p1

 global p2

 global p3

 global p4

 global pValidate

 while shouldClose == False:

 #check if the 1 button was pressed

 if GPIO.input(button1) == GPIO.LOW:

 #turn on the Led

 if p1 == False:

 cifra1 = (cifra1+1)%10

 p1 = True

 else:

 p1 = False

 #check if the 2 button was pressed

 if GPIO.input(button2) == GPIO.LOW:

 #turn off the Led

 if p2 == False:

 cifra2 = (cifra2+1)%10

 p2 = True

 else:

 p2 = False

 #check if the 3 button was pressed

 if GPIO.input(button3) == GPIO.LOW:

 #turn off the Led

 if p3 == False:

 cifra3 = (cifra3+1)%10

 p3 = True

 else:

 p3 = False

 #check if the 4 button was pressed

 if GPIO.input(button4) == GPIO.LOW:

 #turn off the Led

 if p4 == False:

 cifra4 = (cifra4+1)%10

 p4 = True

 else:

 p4 = False

 #check if the VALIDATE button was pressed

 if GPIO.input(buttonVALIDATE) == GPIO.LOW:

 #turn off the Led

 if pValidate == False:

 pValidate = True

 #make password as string

 password = cifra1.__str__() + cifra2.__str__() + cifra3.__str__() +

cifra4.__str__()

 #send password via kafka to the door

 password_message = bytearray(password, encoding="utf-8")

 password_headers = []

 password_producer.send(topic=topic, value=password_message,

headers=password_headers)

 password_producer.flush()

 #reset digits

 cifra1 = 0

 cifra2 = 0

 cifra3 = 0

 cifra4 = 0

 else:

 pValidate = False

 time.sleep(0.1)

#Thread stuff

shouldClose = False

thread = threading.Thread(target = checkButtons)

try:

 #call the "Digit" function in order to update

 #the value of the "digit" variable

 Digit(5)

 #send two byte values tothe shift registers

 #after this, all the A LEDs will turn on, because

 #all the digits are turned on (they are set to LOW)

 shift(dot)

 time.sleep(1)

 thread.start()

 while True:

 refresh()

except KeyboardInterrupt:

 pass

 shouldClose = True

 thread.join()

 digit = 0

 shift(0)

 #clean all the used ports

 GPIO.cleanup()

Tasks Details

Baciu H. Alexandru Corduneanu Vlad
Haralamb
Marian

Implementing circuit for stepper and

closing button

Implementing circuit for the owner (keyboard

with display)

Safe exterior build:

walls, floor and door

Building the safe lock and adding logic

for safe lock

Adding logic for the owner input and sending

data to the server

Adding led`s to

project

Logic for getting password from server

and validate it
Logic for showing display to owner

Logic for the state of

the safe

	Elevator Pitch
	Cover Image
	Story
	Schematics
	Code
	Safe.py
	Owner.py

	Tasks Details

