
Echipa 2: Pascal Dragos-Costin

Mail: dragos-costin.pascal@student.tuiasi.ro

Photo:

Hackster.io link for more details about project:

https://www.hackster.io/dragos-costinpascal/rpi-piano-0ca0d7

Github link for the code:

https://github.com/PascalDragosCostin/RPi-Piano

https://github.com/PascalDragosCostin/RPi-Piano-RPi-Zero - Contains NodeJs specific modules for RaspberryPi Zero W

https://github.com/PascalDragosCostin/RPi-Piano-Windows - Contains NodeJs specific modules for Windows 10

Youtube links for demos and website presentation:

https://www.youtube.com/watch?v=ou-uMvP5mq0

https://www.youtube.com/watch?v=08UDDsCrvWQ

Project Name: RPi-Piano

Photo:

https://www.youtube.com/watch?v=08UDDsCrvWQ
https://www.youtube.com/watch?v=ou-uMvP5mq0
https://github.com/PascalDragosCostin/RPi-Piano-Windows
https://github.com/PascalDragosCostin/RPi-Piano-RPi-Zero
https://github.com/PascalDragosCostin/RPi-Piano
https://www.hackster.io/dragos-costinpascal/rpi-piano-0ca0d7
mailto:dragos-costin.pascal@student.tuiasi.ro

Elevator Pitch: The project contains WEB development: Front-End (HTML, CSS,

JavaScript), Back-End (Node.js) and Python3 programming on a RaspberryPi running

Raspbian (Linux).

Hardware Components:

• RaspberryPi Zero WH

• Breadboard 830p

• Passive buzzer

• 4 Digit 7 Segment Common Cathode Display

• Diode

• Bipolar junction transistor

• 4 x 150Ω resistors

• 1 x 1000Ω resistor

• Male-to-male jumper wires

• Male-to-female jumper wires

Software apps and online services

• Raspberry Pi Raspbian

• Python 3

• pigpio library

• RPi.GPIO library

• Node.js

• npm

• express

• ejs

• body-parser

• session

• nodemon (optional)

• PuTTY (or another way to connect to Development Board)

Hand tools and fabrication machines

Tweezers used for inserting resistors in breadboards near display.

Story

This project combines different areas of programming, like WEB development and

Embedded systems.

Raspberry Pi runs a Node.js 14 server. Because of that, the piano can be accessed

by anywhere and by any device that has a network connection and an installed browser.

The server provides a website that contains 4 pages:

• "Piano" is the main page and presents tiles, a list of themes, a controller with

which you can select Chords or Notes view, and buttons for the seven octaves.

• "About" page contains information about the Raspberry Pi development board

and the project.

• "Demo" page has some videos and images with the project running.

• "Stats" page includes information about the development board like temperature

of the processor, available RAM. There is also listed network data.

The default port of the server is 6789. In order to access the pages, you have to

insert the authorization code which is also 6789. You can change the port and the

authorization code by modifying the cfg.json file located in the root directory.

The static part of the interface is written in HTML 5 decorated with CSS 3. Keys are

simple divs that have different style classes.

The dynamic part of the interface is written in JavaScript (client side), and provides

responses for actions like hovering, pressing a tile or changing visual aspects. The

communication with the server (get and post methods) is also written in JavaScript. I used

AJAX for asynchronous programming. Some elements like selected theme, selected

octave, chords or notes view are stored on the server for a smooth experience.

The server processes requests for different pages (there is actually a layout for the

entire site so the pages look similar), but also contains the logic for interpreting the

pressed keys (with mouse or with keyboard (Z->M for tones and S->J for Semitones).

When the server starts, it spawns a python process that handles GPIO pins. When a key is

pressed, the server passes the information to the python script which controls the buzzer

and the display.

The buzzer is controlled by a PWM (Pulse Width Modulation). Frequency corresponds to

the musical note and duty cycle is always 50%.

In the schematic you will see a BJT (bipolar junction transistor) for current amplification

and to relieve stress of the pin. The output voltage of the ARM 11 processor is 3.3V, but

because of the transistor, the buzzer uses 5V direct from the power supply.

The diode is present because the passive buzzer is a piezoelectric component that

generates reverse voltage when unplugged.

The display is 4 digit 7 segments common Cathode display. It shows the frequency of the

sound that the buzzer sings. Because it uses leds, I inserted 4 resistances on every digit

cathode to limit current through it.

In order to replicate this project you need to clone the git repository linked bellow and

install:

• Node.js (Chrome's V8 JavaScript engine based interpreter for server side

JavaScript)

• Python 3 (v3.8)

 - pigpio library (to control hardware PWM)

- RPI.GPIO library (to control GPIO)

After that change directory to RPi-Piano and:

• Initialize the Node.js dependencies

• npm init

• npm install

• npm install express --save

• npm install ejs --save

• npm install express-ejs-layouts --save

• npm install body-parser --save

• npm install express-ejs-layouts

• npm instal session

• Spawn pigpio library daemon (you will probably need root permission)

• sudo pigpiod

The repository contains only active files (javascript, server side javascript, HTML,

CSS, images, python). Node.js packages and configurations are not saved because they

depend on the operating system and, even more, on the processor. For example you will

need different package configuration for RaspberryPi Zero W and RaspberryPi 3, although

both of them run Raspbian (Debian for Raspberry) on an ARM processor.

Photos

